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Superconvergence of a Finite Element 
Approximation to the Solution of a 

Sobolev Equation in a Single Space Variable 

By Douglas N. Arnold, Jim Douglas, Jr. and Vidar Thomee* 

Abstract. A standard Galerkin method for a quasilinear equation of Sobolev type using 
continuous, piecewise-polynomial spaces is presented and analyzed. Optimal order error 
estimates are established in various norms, and nodal superconvergence is demonstrated. 
Discretization in time by explicit single-step methods is discussed. 

1. Introduction. We shall consider the numerical solution of the periodic initial 
value problem for the Sobolev equation given by 

(1.la) -(auX,)X + Cu, = -(au)x+ fux + y forx eR,t J = J[O, T], 
(I.lb) u(x, O) = uo(x) forx E R, 

(I.lc) u(x + 1,t) = u(x,t) for(x,t) eR x J. 

The coefficients a and c will be allowed to depend on x and will be assumed to be 
1-periodic and bounded above and below by positive constants, so that the bilinear 
form 

A(T, ) = (aT', 4) + (cT, 41) = (am'4' + cpgP) dx 

is equivalent to the usual inner product on the Sobolev space H '([O, 1]). The 
coefficients a, /3, and y will be C l functions of x, t and u which are 1-periodic with 
respect to x. 

Sobolev equations of the form (1.1 a) have been employed to model a variety of 
physical processes (see [6] for references). An example of particular interest is the 
equation 

(1.2) -uXX, + u, + (I + U)UX - vuxx = 0 

that has been studied extensively by Benjamin, Bona, and Mahony [1] and others 
[3], [13]-[16] as an alternative to the Korteweg-de Vries equation for describing 
unidirectional, long, dispersive waves. 

The numerical solution of problems similar to (1.1) has been treated by a 
number of authors [5]-[9], using both finite difference and finite element methods. 
The special case described by (1.2) has also been studied in [2], [4], [16], [17], [20]. 
We shall consider a standard Galerkin method for (1.1), and we shall derive both 
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global estimates and, more interestingly, superconvergence results for the ap- 
proximate solution at knots at which the smoothness constraint of the piecewise- 
polynomial trial space reduces to simple continuity. Our global estimates, while 
new in their explicit form, are closely related to ones obtained earlier by Ewing [6]; 
they are included so that they can be applied in the derivation of the superconver- 
gence estimates. The superconvergence is demonstrated using a duality argument 
based on the pivot space formed by the periodic functions in H'. 

Denote the periodic Sobolev spaces by 

H = { f E H k (R)jf(x + 1) = f(x), x E R}, 
and let the norm of H k be llf Ilk = If IIHk(I), where I is any interval of length one. 
Frequently, the index zero will be omitted for H?(I) = L2(I). We shall abbreviate 
the notation for the space Lq(O, T; H k) to Lq(H k), 1 < q < oo. The letter C will 
be used to indicate generic constants, and the usual functional notation will be 
employed to specify dependence. However, dependence on T and the coefficients 
a, c, a, ,B, and y will generally not be noted explicitly. 

We assume that the problem (1.1) is well-posed in the sense that, for given 
uo E= HI, there exists a unique C ' map u of J into H satisfying (l.la) weakly and 
such that u(0) = u0. Existence and uniqueness results of this sort can be proved 
under a variety of hypotheses. Well-posedness of (1.2) is proved in [1], [3], [13], [14], 
[15], [18]. The following theorem, the proof of which is indicated in the Appendix, 
is similar, but not identical, to several appearing elsewhere [10], [18], [19]. 

THEOREM 1.1. Suppose that a and c are strictly positive, 1-periodic functions in 
L (R) and that a, /3, y E Cb'(R X J X R) are 1-periodic with respect to their first 
argument. Then, given uo E H', there exists a unique C' map u of J into HI such 
that 

(1.3a) A(u,, X) = (a(u)u., X,) + (3(u)u., x) + (y(u), X) for X E Hp,1 
(1.3b) u(0) = u0. 

Further, IIu IIL(Hp') 
is bounded by a constant depending only on IIuoIII, T, and the 

coefficients a, c, a, /, and y. 

The following regularity theorem is also proved in the Appendix. 

THEOREM 1.2. Let k be a positive integer, let m = max(1, k - 1), and suppose that 
a and c are strictly positive, 1-periodic functions in Ck- I(R), and that a, /3, and y are 
functions in Cm(R) which are 1-periodic with respect to their first argument. Let u be 
a C' map of J into H ' satisfying (1.3) with uo E H k. Then u(t) C HIk for all t E J. 
Moreover 

(1.4) IlullL-(Hk) + IIUltIL-(Hk) < C, 

where C is a constant which depends only on II u0llIk T, and the coefficients a, c, a, , 
and y. 

2. The Finite Element Approximation. We suppose given a sequence of values of 
h clustering at 0 and for each h a partition 0-= x0 < < ... < xh = 1 with 
supi(xih - x/U I) = h. The finite element space GA = 9XTh c H,, is then taken to be 
the space of continuous, 1-periodic functions which restrict to polynomials of 
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degree at most r on each of the subintervals (X,h 1, xi'). Here, r > 1 is a fixed 
integer. It is well known that for some constant C, independent of h, 

(2.1) inf (IlT - xil + hllp - XIII) < CI,hq forT (E Hpq, 1 < q < r + 1. 
X C- Xh 

The semidiscrete solution of (1.1) is defined to be the function U = Uh: J 9 
such that 

(2-2a) A ( U,, X) = (a ( U) U., x.) + ( 8( U) U., X) + (y (U), X) for X E- DX, t E- J, 
(2.2b) A(U(O), X) = A(uo, X) for X E 9T, 

The Eqs. (2.2a) can be interpreted as a finite system of ordinary differential 
equations in the coefficients of U with respect to some basis for 9T. Therefore, 
(2.2) has a unique solution at least locally in . In the next section we shall show 
that the solution U persists for t E J. 

3. Global Error Estimates. Henceforth, we assume that a, c E Cr(R) and a, /B, y 
E Cr(R x J x R). In this section we prove the following theorem. 

THEOREM 3.1. The solution Uh of (2.2) is defined for all t E J, and 

II Uh |UIILo(H;) < C(IIu0II,)h for 0 < s < 1 < q < r + 1. 

Proof. First we make the temporary assumption that a, /3, y E Cb,(R X J x R). 
It is then easy to see that U is defined on all of J. Indeed, setting X = U in (2.2a) 
and integrating over the interval (0, t) c J yields 

A( U(t), U(t)) < A( U(O), U(O)) + C 'II U(T)i12 dT. 

From this relation, Gronwall's lemma and (2.2b) follow the a priori estimates 

(3.1) II UIIL(Hl) < CI U(0)ii1 < Ciiu0ii,, 

which suffice to establish existence of U(t) for all t E J. 
For the purpose of the error analysis, we introduce the elliptic projection ui =Uh: 

J -> 9T of u, defined by the equations 

(3.2) A(i, X)=A(u,X) forX EE9 . 

Let -q = u!- u,D= U- u, = iu- U = 1 - . It is well known that 

(3.3) IIii(t)IIs < CIIU(t)llqhq-s for t E J, 0 < s < 1 < q < r + 1. 

Hence, in order to prove the theorem, it suffices to show that 

iiiiLOO(Hp') < C(||uO||q)hq-s for O < s < 1 < q < r + 1. 

Now, if we subtract the weak form of (1.1 a) from (2.2a) and use Taylor's theorem, 
we find that 

(3.4) A(t, X) = B(g, X) -(a(U)gD, x,) + (iuug, yx) 

+ (fl(U%1x X) + ([ #Uu. + Yu]D ~x) for x E '%, 

where Fu = 1f Fu(u + Tr) dT for F = a, /3, or y. Note that, since the solution u of 
(1.1) is stable in the space Hp by Theorem 1.1 and since IITIIL' < I ITIIi 

(3.5) IB(p, 4')I < Q(IIuoI I1)IITIi I,IuI for T, 41 E Hp- 
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Moreover, integrating by parts, we obtain 

B(p, ) = (T, -a( U)4x + [-.( U) - a( U)U + -( U) 

+[-8x( U) - fu3(U)Ux + 83uux + YU 

Since (3.1) implies that 

I(T, au(U)Ux41)j < JlITI Ilau(U)IIL-11 Uxll IICXIIL- < C(IIUOIII)IITII 114/112, 

then 

(3.6) IB(T), 41)1 < C(1Iu0IIj)IITII 114/112. 

It follows from (3.2) that AQq,, X) = 0 for X E 'T; consequently, A(t,, X) = 

-A(',, X) and 

(3.7a) A(t,, X) = -B(t, X) for X E 6T. 

The initial values of Uh were chosen in (2.2b) so that 

(3.7b) ((O) = 0. 

The choice X = {, in (3.7a) leads to the inequality 

(3.8) UJI,ll < CQlu01101)01. 

Now, by (3.7b), 

10(t)II, = 
t A,(T) dT f II jj.(T)Ijj dT 

< C(IIuoIIi)ft(jIe(T)Ijl + IIri(T)IIj) dT, 

since ' = - . An application of Gronwall's lemma shows that 

1lti11L-(H,) < C(ll Uolll)IInII L1(Hpl) < C(II UOIII)II UII L(Hp9)h 

In light of the regularity Theorem 1.2, this shows the desired estimate for s = 1. 
It remains to consider the case s = 0. Fix t E J and let 4 E H2 be the 1-periodic 

solution of the equation 

- (a4x)x + C4A=,(t). 
Then, 

39) 114/112 < C114,(t)11 

Now, by (3.7a), 

lt,(t)II2 -A (t (t), 41) 
= A(j,(t), X-x) + B(t(t), -X) - B(t(t), 41) for X E 6T. 

So, by (3.5) and (3.6), 

glt(t)II2 < C (glt(t)II l + jjt(t)jjj) inf 111-xl XII + Ul(011l 114/1124 

with C = C(IIuoIII). Hence, by (2.1), (3.8), and (3.9), 

jjft(t)jj < QIll(t)IIIh + IV011)l) < C(OIU011q)(h q + gl(t)II), 

where in the latter inequality we have used the H' estimate on ( and H' and L2 
estimates on i1. Integration in time and application of Gronwall's lemma as before 
yields the desired estimate and thus completes the proof of the theorem in case 
a, /3, y e Cb(R x J x R). 
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Finally, we must remove the hypothesis that the coefficients and their first 
derivatives are bounded. Let a*, /8*, and y* be functions in Cb'(R x J x R) which 
are periodic with respect to their first argument, and which extend a, /3, and y from 
a neighborhood of the solution surface, {(x, t, u(x, t))J(x, t) E R x J}. Then the 
differential problem derived from (1.1) by replacing the coefficients a, /3, y with a*, 
/8*, y* has a unique solution by Theorem 1.1, which must be u. The above analysis 
applies to that equation, giving for each h the semidiscrete Galerkin solution Uh, 
which converges to u uniformly in (x, t). For small h, (a*, /*, y*) = (a, /3, y) on 
{(x, t, Uh(x, t))j(x, t) E R x J}, and so Uh must also be the (necessarily unique) 
semidiscrete Galerkin solution for the original problem; i.e., Uh = Uh* converges to 
u and the desired error estimates hold. 

4. Superconvergence Estimates. The following theorem is the major result of this 
paper. It will be deduced by a refinement of the duality argument used in showing 
the L2-estimate in Theorem 3.1. 

THEOREM 4.1. The error in the solution given by the semidiscrete finite element 
method satisfies the inequality 

IUh((XI t) - u(x, t)1 < C(IIU0I1r+i)h 

for each knotx {0xl... 1 Xn'} and each t E J. 

For the proof, we fix a knot x- and define the space 

H = n Hr+ 1((-, - + 1)), 

normed by H`4'' = 114IIH+'((X- + 1)). Thus, the elements of H are continuous 1-peri- 
odic functions with r + 1 locally square-integrable derivatives, except at the point 
x, where the first derivative can have a simple discontinuity. An example of such a 
function is the periodic Green's function for the operator p -* -(a9,)J + cT at x-; 
that is, the function G E HI defined by the equations 

A(T, G) = T(x-) for T E Hl. 

From the elementary theory of ordinary differential equations we know that I G 
may be bounded by a constant depending only on a and c. 

Since the finite element space is constrained only by continuity at the knot x-, the 
usual proof of (2.1) yields the estimate 

(4.1) inf 1141 - X1II < C114,IIIhr for 41 & H. 
X (-9R, 

For qip E He', we define the following dual norm: 

IIITIII* = sup A(T, 4')/11141II 
O E H 

The lemma below shows that this norm dominates the knot value. 

LEMMA 4.2. There exists a constant C such that 

lq(X-){I < CIII II I* forTp E H 

Proof. This follows immediately from the relations 
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Now has the appearance of a norm of order r + 1, and we have defined its 
dual by pivoting about the Hi inner product; so, we should expect III * to 
behave like a norm of order -(r - 1). (In fact, as we shall see at the end of this 
section, jjj * * dominates the usual norm in H -- 1).) Thus, the exponent appear- 
ing in the next result is the expected one. 

LEMMA 4.3. The dual norm of the error ) = iUh - u in the elliptic projection 
satisfies the inequality 

11171(t)111 * C(IIUOlIIr+)h2r for t E J. 

Proof. Let 4, E H. By (3.3) and (4.1), 

A(7, 4,) = inf A(7q, 4' - X) S C |I|1|1 inf 114 - Xll l S CIIUIIr+1h2r14,l111, 

which demonstrates the lemma. 
To bound I11* we need a lemma which will allow us to estimate the right-hand 

side of (3.7a) by duality. Since the coefficients of the form B are not known to be 
sufficiently smooth to enable us to do this, we first refine this form. Carrying some 
additional terms in the Taylor expansions, we write (3.7a) in the form 

(4.2) A (t, X) = -B (D, X) - R(x) for X E 9t, 

where 

B (@p, 4,) = (a(u), 41) + (au(u)u"p, 14x) 
+ (3(u)p, 4,) + ([/ fu(u)u, + yu(u)]q, 4), 

and 

R(X) = ( a-u ix + a-u xJ,) + (jiu.x + jBuUx2 + 
- 

"2 X). 

Here, 

Fu = I (1-T)Fuu(u + T(U-u)) dT for F = a, f, or y. 

Note that, by Theorem 3.1, 

(4.3) JR(X)l S CHOIL-110111XIIXII S C(IIUOIlr+,)h 
2r 

IXII 1 

Clearly, 

(4.4) B(, A)J S C(Q1u0110 )11AP1,jI4,,. 

LEMMA 4.4. There exists C = C(II UoII r+ 1) such that 

IB(r, 4')J < CIIIq9III*III4III for qg E Hp', 4, E H, t E J. 

Proof. It follows from (4.4) and the Riesz representation theorem that, for given 
4, E Hp', there exists a unique 4, E Hp' such that 

A(q, A = BQ(, 4,) for p E Hp' 
and 

1141111 < COlUoll0l)tlAll 

Clearly, it now suffices to show that 

(4.5) ?11+1l1 < CII4,I11 for4, E H. 
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In view of the definition of B, 4, satisfies the differential equation 

- (a4)j + CA = _ - (a(u)iPx)x + au(u)ux+4x - (f3(u)q,)x + (fu(u)ux + yu(u))4/ 

on (xV, x + 1). Moreover, 

14 (x)l= j4(X + 1)1 < 11i4i ? C(IQuOII,)tlI4,ll, 
Thus, regularity of the Dirichlet two-point boundary value problem implies that 

11141111 < COIU0111)(ll4111 + I8l -t( x+) C(IIUOII,+1)1114)1111 

which shows (4.5). 
Proof of Theorem 4.1. By Lemmas 4.2 and 4.3 it remains to show that, for 

= U- Uhl 

(4.6) 111111* < C(IIuOIIr+i)h2r for t E J. 

Let 41 E H. By (4.2), we have for fixed t E J the relation 

A(t, 4,) = A(~t, 4, - X) + B(~, , - X) - B(, )-(X). 

Choosing X by (4.1) and using (4.4), Lemma 4.4, and (4.3), we obtain the estimate 

IA(4t, 4)1 < C(IIuOtIr+i)((II4tIIj + Ig1D11)hr + IIIqI* + h2r )114111. 

Thus, 

It111* < C(I QIUOIIr+1)(h2r + IgIiII*) 

by Lemma 4.3, (3.8), and Theorem 3.1. Integrate (4.7) in time and apply Gronwall's 
lemma to conclude (4.6). Hence, the theorem has been proved. 

We shall complete this section by demonstrating that, for 9p E Hp" 
(4.8) IIWIIHp(-" _ sup (Tp, 4)/iI4IIr-l < C1119I1*1 

,PEH,_1 + p 

and thus, by Lemma 4.3 and (4.6), 

11Uh - UIIL-(H-Qr-1)) < C(IIUOIlr+i)h2r. 

In fact, for given 4, E Hpr- 1, there exists a unique 4' E Hp 4 such that 

(<p,4,) = A (T,4 ) for E H', 

and 

14'hh 11 4lr+ 1< C1 I4h1r-li 

Hence, by the definition of * 

K94, 01 S 1P1hI1* 1111I < hIkPII *Pi r-1' 

which shows (4.8). 

5. Discretization in Time by Explicit Single-Step Methods. When solving para- 
bolic differential equations by finite element methods, one typically uses an 
implicit finite difference method to solve the system of ordinary differential 
equations which arises from the finite element discretization of the spatial operator. 
Standard explicit ODE solvers do not generally provide stable approximations if 
the time step and the mesh parameter are allowed to tend to zero independently. 
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For Sobolev equations, however, the situation is more favorable. In fact, the 
usual bounds for the truncation error of single-step methods, such as Runge-Kutta 
methods or predictor-corrector methods based on quadrature rules, apply equally 
well to the semidiscrete Sobolev equation (2.2), with the constant independent of the 
level of spatial discretization. We do not wish to carry out the error analysis for such 
methods at length here and so shall consider only the simple case of Euler's 
method. Convergence proofs for more accurate methods, as described in, e.g., [11], 
can easily be adapted to our situation in the same manner. 

The Euler-Galerkin method defines approximations Un to u at tn = nk (k > 0 
being the step-size) by the equations 

(5. 1 a)A(U - U X, X) = k[(a(tn, U')U., Xx) 

+ ( 8(tn, Un) Un, X) + (Y(tn, Un), X)] for X E A, 

(5.1b) A(U, X) = A(uo, X) forX eT6h. 

THEOREM 5.1. The error in the Euler- Galerkin method satisfies the following 
inequalities: 

sup 11 - U(tn)lls < C01|"O1q)h qs + C(11uoll1)k 
n=0,1,.* , [T/k] 

for O < s < 1 < q r+ 1, 

and, with x e {xh, Xh h 

sup I Un(-) - u(x, tj)I ? C(IIUOIIr+i)h2r + C(IIuoIIi) 

n=O, I,.**, [T/k] 

Proof. In view of Theorems 3.1 and 4.1, it suffices to show that, for e = un 

U( tn), 

IlenI1 ll C(tI uolII )k for n = 1, 2, . . . , [ T/k]. 

Since 

U(tn + )- U(t,) = kUt(tn) + k2f Utt(tn + Tk)(1 - T) dT-, 

then, by (2.2), 

A ( U(tn + 1) - U(t,) X) 

(5.2) = k[(a(tn, U(tj))Ux(tn), xx) + (f3(tn U(tn))Ux(tn), X) + (Y(tn U(tn)), X)] 

+ k2J1A ( Utt(tn + T-k), X)( 1--) dT for X E 6?. 

We now subtract (5.2) from (5. la) and use the bound (invoke again the argument 
at the end of Section 3 to avoid global boundedness assumptions) 

1IF(tn, Un) - F(tn, U(tWA))tLo < Cile nLO < Cile nl for F = a, /3, or y, 

and the fact that (cf. (A.2) and (A.3)) 

II U I IL(H) + II UttIL-(H,) < C(Qu01I). 

Then, 

JA(en+1 - e , X)l < C(Iluoill)(kilenIll + k2)11X111 forx X DXh. 
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It results from the choice X = e n + Ithat 

A(e +1, en1)1/2 S (1 + Ck)A(e , en)1/2 + c2 

Since eo = 0, a simple induction shows that 

liet < CIA(en, en)12 ? C1((l + Ck)n - 1)k S C,(eCT- l)k, 

forn=O,1,...,[T/k], 

which completes the proof of the theorem. 
Note that to solve (5.1) it is necessary only to factor and store the single band 

matrix corresponding to the form A. 

Appendix. 
Proof of Theorem 1.1. The method of Faedo-Galerkin [12] can be applied in an 

essentially standard way. Letting {Xm)}?=1 be a smooth basis for Hi and Vn the 
linear span of {Xm}n= we define tn E (0, TI and un E CI(0, tn; Vn) so that 

(A.Ia) A(un, Xm) = (a(un)un, t) + (f8(Un)U,n, Xm) + (Y(Un), Xm), 

f or t E=[0,tn], M= 1, 2,... ,n, 

(A.lb) A(un(O), Xm) = A(uo, Xm) for m = 1, 2, . . ., n, 

which is possible by the standard existence theorem for ordinary differential 
equations. Replacing Xm by u n, we find that 

tIUn(t)tII < C for t E [0, t], 

with C depending only on a, c, a, /3, y, T, and IluoillI but not on n. It follows that 
we may take tn = T for all n. Next, using the test function u,' E Vn we conclude 
that 

(A.2) 11u,t 11 L-(HIp) 
? CI1UIL?(Hp) S C, 

and, by differentiating (A. 1) and substituting ut,, E Vn for xm, that 

(A.3) ||Ut uII L-(HpI) < C. 

Thus, {u'n}, {Utn}, and {un,} are uniformly bounded sets in L?(H 1). In particu- 
lar {un} is uniformly bounded in H1(I x J), which is compactly contained in 
L2(I x J). There thus exist u E L?(H 1) and a subsequence {u'n}?? l1 such that as 
P -x> , u'- u weakly* in L?'(H 1), strongly in L2(I x J), and almost everywhere, 
and such that u,-* u, and un,-> u, weakly* in L?(H1). It follows that u E 

Cl(HP,), and it is then easy to pass to the limit in the Ll(J)-weak* topology in 
(A. 1), verifying (1.3) with X = Xm. Since m is arbitrary, this completes the proof. 

Proof of Theorem 1.2. We shall show that the sequence {un} constructed above 
satisfies the inequality 

(A.4) I|un IIL?(Hk) + IIUtllL?(Hk) < C, 

with C independent of n. Since the set of functions in L?(H k) with norm not 
exceeding C is compact, the result (1.4) follows. For k = 1, the inequality (A.4) is 
given by (A.2). We shall proceed by induction on k, abbreviating a k/aXk to ak and 
dropping the superscript n for brevity. Replace Xm in (A.1) by X = (_l)ka2kUt. 
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Then, in view of the inductive hypothesis, 

A(u,, X) = A(aku1, aku) + E (k)[(aia ak+ -ju ak+lu) + (aic. ak-jU,, akU,)] 

1 ~ ~ j= 
> 

2KII Ut 1 - C( UOII k), 

where K = min(inf a, inf c). Also, 

I(a(u)u, xx)I = | (I?)(ai[a(u)lak+11u, ak+lu) 

I 
-llak+ lUt||2 + 11loIk( lUl+ 12 

1 + 
C(IuOIIk)(1 + kII~+) 

Similarly, 

(f3(u)u., x)| +I(y(U), x)|I 8 KIa utII2 + C(IIuOIIk)(1 + kUII2?1). 

Thus, 

kIutIIk+1 < C(Ou01k)(1 + IIuk+I+). 

It follows from Gronwall's lemma that 

IIUIILOO(H,k+') < QlU011k+ 1). 

These two inequalities imply (A.4) with k replaced by k + 1 and complete the 
proof. 
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